Kalman Filter
KalmanFilter¶
Implements a linear Kalman filter. For now the best documentation is my free book Kalman and Bayesian Filters in Python [2]
The test files in this directory also give you a basic idea of use, albeit without much description.
In brief, you will first construct this object, specifying the size of the
state vector with dim_x and the size of the measurement vector that you
will be using with dim_z. These are mostly used to perform size checks
when you assign values to the various matrices. For example, if you
specified dim_z=2 and then try to assign a 3x3 matrix to R (the
measurement noise matrix you will get an assert exception because R
should be 2x2. (If for whatever reason you need to alter the size of things
midstream just use the underscore version of the matrices to assign
directly: your_filter._R = a_3x3_matrix.)
After construction the filter will have default matrices created for you, but you must specify the values for each. It's usually easiest to just overwrite them rather than assign to each element yourself. This will be clearer in the example below. All are of type numpy.array.
These are the matrices (instance variables) which you must specify. All are of type numpy.array (do NOT use numpy.matrix) If dimensional analysis allows you to get away with a 1x1 matrix you may also use a scalar. All elements must have a type of float.
Instance Variables
You will have to assign reasonable values to all of these before running the filter. All must have dtype of float.
x : ndarray (dim_x, 1), default = [0,0,0...0] filter state estimate
P : ndarray (dim_x, dim_x), default eye(dim_x) covariance matrix
Q : ndarray (dim_x, dim_x), default eye(dim_x) Process uncertainty/noise
R : ndarray (dim_z, dim_z), default eye(dim_z) measurement uncertainty/noise
H : ndarray (dim_z, dim_x) measurement function
F : ndarray (dim_x, dim_x) state transition matrix
B : ndarray (dim_x, dim_u), default 0 control transition matrix
Optional Instance Variables
alpha : float
Assign a value > 1.0 to turn this into a fading memory filter.
Read-only Instance Variables
K : ndarray Kalman gain that was used in the most recent update() call.
y : ndarray Residual calculated in the most recent update() call. I.e., the different between the measurement and the current estimated state projected into measurement space (z - Hx)
S : ndarray System uncertainty projected into measurement space. I.e., HPH' + R. Probably not very useful, but it is here if you want it.
likelihood : float Likelihood of last measurment update.
log_likelihood : float Log likelihood of last measurment update.
Example
Here is a filter that tracks position and velocity using a sensor that only reads position.
First construct the object with the required dimensionality.
.. code`` from filterpy.kalman import KalmanFilter f = KalmanFilter (dim_x=2, dim_z=1)
``
Assign the initial value for the state (position and velocity). You can do this with a two dimensional array like so:
.. code`` f.x = np.array([[2.],# position [0.]]) # velocity
``
or just use a one dimensional array, which I prefer doing.
.. code`` f.x = np.array([2., 0.])
``
Define the state transition matrix:
.. code`` f.F = np.array([[1.,1.], [0.,1.]])
``
Define the measurement function:
.. code`` f.H = np.array([[1.,0.]])
``
Define the covariance matrix. Here I take advantage of the fact that P already contains np.eye(dim_x), and just multiply by the uncertainty:
.. code`` f.P *= 1000.
``
I could have written:
.. code`` f.P = np.array([[1000.,0.], [ 0., 1000.] ])
``
You decide which is more readable and understandable.
Now assign the measurement noise. Here the dimension is 1x1, so I can use a scalar
.. code`` f.R = 5
``
I could have done this instead:
.. code`` f.R = np.array([[5.]])
``
Note that this must be a 2 dimensional array, as must all the matrices.
Finally, I will assign the process noise. Here I will take advantage of another FilterPy library function:
.. code`` from filterpy.common import Q_discrete_white_noise f.Q = Q_discrete_white_noise(dim=2, dt=0.1, var=0.13)
``
Now just perform the standard predict/update loop:
while some_condition_is_true:
.. code`` z = get_sensor_reading() f.predict() f.update(z)
``
do_something_with_estimate (f.x)
Procedural Form
This module also contains stand alone functions to perform Kalman filtering. Use these if you are not a fan of objects.
Example
.. code`` while True: z, R = read_sensor() x, P = predict(x, P, F, Q) x, P = update(x, P, z, R, H)
``
References
.. [2] Labbe, Roger. "Kalman and Bayesian Filters in Python".
github repo: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
read online: http://nbviewer.ipython.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/table_of_contents.ipynb
API Reference¶
KalmanFilter
¶
Bases: object
Implements a Kalman filter. You are responsible for setting the various state variables to reasonable values; the defaults will not give you a functional filter.
For now the best documentation is my free book Kalman and Bayesian Filters in Python [2]_. The test files in this directory also give you a basic idea of use, albeit without much description.
In brief, you will first construct this object, specifying the size of the state vector with dim_x and the size of the measurement vector that you will be using with dim_z. These are mostly used to perform size checks when you assign values to the various matrices. For example, if you specified dim_z=2 and then try to assign a 3x3 matrix to R (the measurement noise matrix you will get an assert exception because R should be 2x2. (If for whatever reason you need to alter the size of things midstream just use the underscore version of the matrices to assign directly: your_filter._R = a_3x3_matrix.)
After construction the filter will have default matrices created for you, but you must specify the values for each. It’s usually easiest to just overwrite them rather than assign to each element yourself. This will be clearer in the example below. All are of type numpy.array.
Examples:
Here is a filter that tracks position and velocity using a sensor that only reads position.
First construct the object with the required dimensionality. Here the state
(dim_x) has 2 coefficients (position and velocity), and the measurement
(dim_z) has one. In FilterPy x is the state, z is the measurement.
.. code::
from bayesian_filters.kalman import KalmanFilter
f = KalmanFilter (dim_x=2, dim_z=1)
Assign the initial value for the state (position and velocity). You can do this with a two dimensional array like so:
.. code::
f.x = np.array([[2.], # position
[0.]]) # velocity
or just use a one dimensional array, which I prefer doing.
.. code::
f.x = np.array([2., 0.])
Define the state transition matrix:
.. code::
f.F = np.array([[1.,1.],
[0.,1.]])
Define the measurement function. Here we need to convert a position-velocity vector into just a position vector, so we use:
.. code::
f.H = np.array([[1., 0.]])
Define the state's covariance matrix P.
.. code::
f.P = np.array([[1000., 0.],
[ 0., 1000.] ])
Now assign the measurement noise. Here the dimension is 1x1, so I can use a scalar
.. code::
f.R = 5
I could have done this instead:
.. code::
f.R = np.array([[5.]])
Note that this must be a 2 dimensional array.
Finally, I will assign the process noise. Here I will take advantage of another FilterPy library function:
.. code::
from bayesian_filters.common import Q_discrete_white_noise
f.Q = Q_discrete_white_noise(dim=2, dt=0.1, var=0.13)
Now just perform the standard predict/update loop:
.. code::
while some_condition_is_true:
z = get_sensor_reading()
f.predict()
f.update(z)
do_something_with_estimate (f.x)
Procedural Form
This module also contains stand alone functions to perform Kalman filtering. Use these if you are not a fan of objects.
Example
.. code::
while True:
z, R = read_sensor()
x, P = predict(x, P, F, Q)
x, P = update(x, P, z, R, H)
See my book Kalman and Bayesian Filters in Python [2]_.
You will have to set the following attributes after constructing this object for the filter to perform properly. Please note that there are various checks in place to ensure that you have made everything the 'correct' size. However, it is possible to provide incorrectly sized arrays such that the linear algebra can not perform an operation. It can also fail silently - you can end up with matrices of a size that allows the linear algebra to work, but are the wrong shape for the problem you are trying to solve.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dim_x
|
int
|
Number of state variables for the Kalman filter. For example, if you are tracking the position and velocity of an object in two dimensions, dim_x would be 4. This is used to set the default size of P, Q, and u |
required |
dim_z
|
int
|
Number of of measurement inputs. For example, if the sensor provides you with position in (x,y), dim_z would be 2. |
required |
dim_u
|
int(optional)
|
size of the control input, if it is being used. Default value of 0 indicates it is not used. |
0
|
Attributes:
| Name | Type | Description |
|---|---|---|
x |
array(dim_x, 1)
|
Current state estimate. Any call to update() or predict() updates this variable. |
P |
array(dim_x, dim_x)
|
Current state covariance matrix. Any call to update() or predict() updates this variable. |
x_prior |
array(dim_x, 1)
|
Prior (predicted) state estimate. The _prior and _post attributes are for convenience; they store the prior and posterior of the current epoch. Read Only. |
P_prior |
array(dim_x, dim_x)
|
Prior (predicted) state covariance matrix. Read Only. |
x_post |
array(dim_x, 1)
|
Posterior (updated) state estimate. Read Only. |
P_post |
array(dim_x, dim_x)
|
Posterior (updated) state covariance matrix. Read Only. |
z |
array
|
Last measurement used in update(). Read only. |
R |
array(dim_z, dim_z)
|
Measurement noise covariance matrix. Also known as the observation covariance. |
Q |
array(dim_x, dim_x)
|
Process noise covariance matrix. Also known as the transition covariance. |
F |
array()
|
State Transition matrix. Also known as |
H |
array(dim_z, dim_x)
|
Measurement function. Also known as the observation matrix, or as |
y |
array
|
Residual of the update step. Read only. |
K |
array(dim_x, dim_z)
|
Kalman gain of the update step. Read only. |
S |
array
|
System uncertainty (P projected to measurement space). Read only. |
SI |
array
|
Inverse system uncertainty. Read only. |
log_likelihood |
float
|
log-likelihood of the last measurement. Read only. |
likelihood |
float
|
likelihood of last measurement. Read only. Computed from the log-likelihood. The log-likelihood can be very small, meaning a large negative value such as -28000. Taking the exp() of that results in 0.0, which can break typical algorithms which multiply by this value, so by default we always return a number >= sys.float_info.min. |
mahalanobis |
float
|
mahalanobis distance of the innovation. Read only. |
inv |
function, default numpy.linalg.inv
|
If you prefer another inverse function, such as the Moore-Penrose pseudo inverse, set it to that instead: kf.inv = np.linalg.pinv This is only used to invert self.S. If you know it is diagonal, you might choose to set it to bayesian_filters.common.inv_diagonal, which is several times faster than numpy.linalg.inv for diagonal matrices. |
alpha |
float
|
Fading memory setting. 1.0 gives the normal Kalman filter, and values slightly larger than 1.0 (such as 1.02) give a fading memory effect - previous measurements have less influence on the filter's estimates. This formulation of the Fading memory filter (there are many) is due to Dan Simon [1]_. |
References
.. [1] Dan Simon. "Optimal State Estimation." John Wiley & Sons. p. 208-212. (2006)
.. [2] Roger Labbe. "Kalman and Bayesian Filters in Python" https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
Source code in bayesian_filters/kalman/kalman_filter.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 | |
alpha
property
writable
¶
Fading memory setting. 1.0 gives the normal Kalman filter, and values slightly larger than 1.0 (such as 1.02) give a fading memory effect - previous measurements have less influence on the filter's estimates. This formulation of the Fading memory filter (there are many) is due to Dan Simon [1]_.
likelihood
property
¶
Computed from the log-likelihood. The log-likelihood can be very small, meaning a large negative value such as -28000. Taking the exp() of that results in 0.0, which can break typical algorithms which multiply by this value, so by default we always return a number >= sys.float_info.min.
log_likelihood
property
¶
log-likelihood of the last measurement.
mahalanobis
property
¶
" Mahalanobis distance of measurement. E.g. 3 means measurement was 3 standard deviations away from the predicted value.
Returns:
| Name | Type | Description |
|---|---|---|
mahalanobis |
float
|
|
batch_filter(zs, Fs=None, Qs=None, Hs=None, Rs=None, Bs=None, us=None, update_first=False, saver=None)
¶
Batch processes a sequences of measurements.
Parameters
zs : list-like
list of measurements at each time step self.dt. Missing
measurements must be represented by None.
Fs : None, list-like, default=None optional value or list of values to use for the state transition matrix F.
If Fs is None then self.F is used for all epochs.
Otherwise it must contain a list-like list of F's, one for
each epoch. This allows you to have varying F per epoch.
Qs : None, np.array or list-like, default=None optional value or list of values to use for the process error covariance Q.
If Qs is None then self.Q is used for all epochs.
Otherwise it must contain a list-like list of Q's, one for
each epoch. This allows you to have varying Q per epoch.
Hs : None, np.array or list-like, default=None optional list of values to use for the measurement matrix H.
If Hs is None then self.H is used for all epochs.
If Hs contains a single matrix, then it is used as H for all
epochs.
Otherwise it must contain a list-like list of H's, one for
each epoch. This allows you to have varying H per epoch.
Rs : None, np.array or list-like, default=None optional list of values to use for the measurement error covariance R.
If Rs is None then self.R is used for all epochs.
Otherwise it must contain a list-like list of R's, one for
each epoch. This allows you to have varying R per epoch.
Bs : None, np.array or list-like, default=None optional list of values to use for the control transition matrix B.
If Bs is None then self.B is used for all epochs.
Otherwise it must contain a list-like list of B's, one for
each epoch. This allows you to have varying B per epoch.
us : None, np.array or list-like, default=None optional list of values to use for the control input vector;
If us is None then None is used for all epochs (equivalent to 0,
or no control input).
Otherwise it must contain a list-like list of u's, one for
each epoch.
update_first : bool, optional, default=False controls whether the order of operations is update followed by predict, or predict followed by update. Default is predict->update.
saver : bayesian_filters.common.Saver, optional bayesian_filters.common.Saver object. If provided, saver.save() will be called after every epoch
Returns
means : np.array((n,dim_x,1))
array of the state for each time step after the update. Each entry
is an np.array. In other words means[k,:] is the state at step
k.
covariance : np.array((n,dim_x,dim_x))
array of the covariances for each time step after the update.
In other words covariance[k,:,:] is the covariance at step k.
means_predictions : np.array((n,dim_x,1))
array of the state for each time step after the predictions. Each
entry is an np.array. In other words means[k,:] is the state at
step k.
covariance_predictions : np.array((n,dim_x,dim_x))
array of the covariances for each time step after the prediction.
In other words covariance[k,:,:] is the covariance at step k.
Examples
.. code-block:: Python
# this example demonstrates tracking a measurement where the time
# between measurement varies, as stored in dts. This requires
# that F be recomputed for each epoch. The output is then smoothed
# with an RTS smoother.
zs = [t + random.randn()*4 for t in range (40)]
Fs = [np.array([[1., dt], [0, 1]] for dt in dts]
(mu, cov, _, _) = kf.batch_filter(zs, Fs=Fs)
(xs, Ps, Ks, Pps) = kf.rts_smoother(mu, cov, Fs=Fs)
Source code in bayesian_filters/kalman/kalman_filter.py
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 | |
get_prediction(u=None, B=None, F=None, Q=None)
¶
Predict next state (prior) using the Kalman filter state propagation equations and returns it without modifying the object.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
u
|
array
|
Optional control vector. |
0
|
B
|
np.array(dim_x, dim_u), or None
|
Optional control transition matrix; a value of None
will cause the filter to use |
None
|
F
|
np.array(dim_x, dim_x), or None
|
Optional state transition matrix; a value of None
will cause the filter to use |
None
|
Q
|
np.array(dim_x, dim_x), scalar, or None
|
Optional process noise matrix; a value of None will cause the
filter to use |
None
|
Returns:
| Type | Description |
|---|---|
(x, P) : tuple
|
State vector and covariance array of the prediction. |
Source code in bayesian_filters/kalman/kalman_filter.py
get_update(z=None)
¶
Computes the new estimate based on measurement z and returns it
without altering the state of the filter.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z
|
(dim_z, 1): array_like
|
measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be convertible to a column vector. |
None
|
Returns:
| Type | Description |
|---|---|
(x, P) : tuple
|
State vector and covariance array of the update. |
Source code in bayesian_filters/kalman/kalman_filter.py
log_likelihood_of(z)
¶
log likelihood of the measurement z. This should only be called
after a call to update(). Calling after predict() will yield an
incorrect result.
Source code in bayesian_filters/kalman/kalman_filter.py
measurement_of_state(x)
¶
Helper function that converts a state into a measurement.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
array
|
kalman state vector |
required |
Returns:
| Name | Type | Description |
|---|---|---|
z |
(dim_z, 1): array_like
|
measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be convertible to a column vector. |
Source code in bayesian_filters/kalman/kalman_filter.py
predict(u=None, B=None, F=None, Q=None)
¶
Predict next state (prior) using the Kalman filter state propagation equations.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
u
|
array
|
Optional control vector. |
0
|
B
|
np.array(dim_x, dim_u), or None
|
Optional control transition matrix; a value of None
will cause the filter to use |
None
|
F
|
np.array(dim_x, dim_x), or None
|
Optional state transition matrix; a value of None
will cause the filter to use |
None
|
Q
|
np.array(dim_x, dim_x), scalar, or None
|
Optional process noise matrix; a value of None will cause the
filter to use |
None
|
Source code in bayesian_filters/kalman/kalman_filter.py
predict_steadystate(u=0, B=None)
¶
Predict state (prior) using the Kalman filter state propagation equations. Only x is updated, P is left unchanged. See update_steadstate() for a longer explanation of when to use this method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
u
|
array
|
Optional control vector. If non-zero, it is multiplied by B to create the control input into the system. |
0
|
B
|
np.array(dim_x, dim_u), or None
|
Optional control transition matrix; a value of None
will cause the filter to use |
None
|
Source code in bayesian_filters/kalman/kalman_filter.py
residual_of(z)
¶
Returns the residual for the given measurement (z). Does not alter the state of the filter.
rts_smoother(Xs, Ps, Fs=None, Qs=None, inv=np.linalg.inv)
¶
Runs the Rauch-Tung-Striebel Kalman smoother on a set of
means and covariances computed by a Kalman filter. The usual input
would come from the output of KalmanFilter.batch_filter().
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
Xs
|
array
|
array of the means (state variable x) of the output of a Kalman filter. |
required |
Ps
|
array
|
array of the covariances of the output of a kalman filter. |
required |
Fs
|
list-like collection of numpy.array
|
State transition matrix of the Kalman filter at each time step. Optional, if not provided the filter's self.F will be used |
None
|
Qs
|
list-like collection of numpy.array
|
Process noise of the Kalman filter at each time step. Optional, if not provided the filter's self.Q will be used |
None
|
inv
|
function
|
If you prefer another inverse function, such as the Moore-Penrose pseudo inverse, set it to that instead: kf.inv = np.linalg.pinv |
numpy.linalg.inv
|
Returns:
| Name | Type | Description |
|---|---|---|
x |
ndarray
|
smoothed means |
P |
ndarray
|
smoothed state covariances |
K |
ndarray
|
smoother gain at each step |
Pp |
ndarray
|
Predicted state covariances |
Examples:
.. code-block:: Python
zs = [t + random.randn()*4 for t in range (40)]
(mu, cov, _, _) = kalman.batch_filter(zs)
(x, P, K, Pp) = rts_smoother(mu, cov, kf.F, kf.Q)
Source code in bayesian_filters/kalman/kalman_filter.py
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 | |
test_matrix_dimensions(z=None, H=None, R=None, F=None, Q=None)
¶
Performs a series of asserts to check that the size of everything is what it should be. This can help you debug problems in your design.
If you pass in H, R, F, Q those will be used instead of this object's value for those matrices.
Testing z (the measurement) is problamatic. x is a vector, and can be
implemented as either a 1D array or as a nx1 column vector. Thus Hx
can be of different shapes. Then, if Hx is a single value, it can
be either a 1D array or 2D vector. If either is true, z can reasonably
be a scalar (either '3' or np.array('3') are scalars under this
definition), a 1D, 1 element array, or a 2D, 1 element array. You are
allowed to pass in any combination that works.
Source code in bayesian_filters/kalman/kalman_filter.py
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 | |
update(z, R=None, H=None)
¶
Add a new measurement (z) to the Kalman filter.
If z is None, nothing is computed. However, x_post and P_post are updated with the prior (x_prior, P_prior), and self.z is set to None.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z
|
(dim_z, 1): array_like
|
measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be convertible to a column vector. If you pass in a value of H, z must be a column vector the of the correct size. |
required |
R
|
np.array, scalar, or None
|
Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. |
None
|
H
|
np.array, or None
|
Optionally provide H to override the measurement function for this one call, otherwise self.H will be used. |
None
|
Source code in bayesian_filters/kalman/kalman_filter.py
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 | |
update_correlated(z, R=None, H=None)
¶
Add a new measurement (z) to the Kalman filter assuming that
process noise and measurement noise are correlated as defined in
the self.M matrix.
A partial derivation can be found in [1]
If z is None, nothing is changed.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z
|
(dim_z, 1): array_like
|
measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be convertible to a column vector. |
required |
R
|
np.array, scalar, or None
|
Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. |
None
|
H
|
np.array, or None
|
Optionally provide H to override the measurement function for this one call, otherwise self.H will be used. |
None
|
References
.. [1] Bulut, Y. (2011). Applied Kalman filter theory (Doctoral dissertation, Northeastern University). http://people.duke.edu/~hpgavin/SystemID/References/Balut-KalmanFilter-PhD-NEU-2011.pdf
Source code in bayesian_filters/kalman/kalman_filter.py
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 | |
update_sequential(start, z_i, R_i=None, H_i=None)
¶
Add a single input measurement (z_i) to the Kalman filter. In sequential processing, inputs are processed one at a time.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
start
|
integer
|
Index of the first measurement input updated by this call. |
required |
z_i
|
array or scalar
|
Measurement of inputs for this partial update. |
required |
R_i
|
np.array, scalar, or None
|
Optionally provide R_i to override the measurement noise of inputs for this one call, otherwise a slice of self.R will be used. |
None
|
H_i
|
np.array, or None
|
Optionally provide H[i] to override the partial measurement function for this one call, otherwise a slice of self.H will be used. |
None
|
Source code in bayesian_filters/kalman/kalman_filter.py
update_steadystate(z)
¶
Add a new measurement (z) to the Kalman filter without recomputing the Kalman gain K, the state covariance P, or the system uncertainty S.
You can use this for LTI systems since the Kalman gain and covariance converge to a fixed value. Precompute these and assign them explicitly, or run the Kalman filter using the normal predict()/update(0 cycle until they converge.
The main advantage of this call is speed. We do significantly less computation, notably avoiding a costly matrix inversion.
Use in conjunction with predict_steadystate(), otherwise P will grow without bound.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z
|
(dim_z, 1): array_like
|
measurement for this update. z can be a scalar if dim_z is 1, otherwise it must be convertible to a column vector. |
required |
Examples:
>>> cv = kinematic_kf(dim=3, order=2) # 3D const velocity filter
>>> # let filter converge on representative data, then save k and P
>>> for i in range(100):
>>> cv.predict()
>>> cv.update([i, i, i])
>>> saved_k = np.copy(cv.K)
>>> saved_P = np.copy(cv.P)
later on:
>>> cv = kinematic_kf(dim=3, order=2) # 3D const velocity filter
>>> cv.K = np.copy(saved_K)
>>> cv.P = np.copy(saved_P)
>>> for i in range(100):
>>> cv.predict_steadystate()
>>> cv.update_steadystate([i, i, i])