IMM Estimator
IMM Estimator¶
needs documentation....
API Reference¶
IMMEstimator
¶
Bases: object
Implements an Interacting Multiple-Model (IMM) estimator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filters
|
(N,) array_like of KalmanFilter objects
|
List of N filters. filters[i] is the ith Kalman filter in the IMM estimator. Each filter must have the same dimension for the state |
required |
mu
|
(N,) array_like of float
|
mode probability: mu[i] is the probability that filter i is the correct one. |
required |
M
|
(N, N) ndarray of float
|
Markov chain transition matrix. M[i,j] is the probability of switching from filter j to filter i. |
required |
Attributes:
| Name | Type | Description |
|---|---|---|
x |
array(dim_x, 1)
|
Current state estimate. Any call to update() or predict() updates this variable. |
P |
array(dim_x, dim_x)
|
Current state covariance matrix. Any call to update() or predict() updates this variable. |
x_prior |
array(dim_x, 1)
|
Prior (predicted) state estimate. The _prior and _post attributes are for convienence; they store the prior and posterior of the current epoch. Read Only. |
P_prior |
array(dim_x, dim_x)
|
Prior (predicted) state covariance matrix. Read Only. |
x_post |
array(dim_x, 1)
|
Posterior (updated) state estimate. Read Only. |
P_post |
array(dim_x, dim_x)
|
Posterior (updated) state covariance matrix. Read Only. |
N |
int
|
number of filters in the filter bank |
mu |
(N,) ndarray of float
|
mode probability: mu[i] is the probability that filter i is the correct one. |
M |
(N, N) ndarray of float
|
Markov chain transition matrix. M[i,j] is the probability of switching from filter j to filter i. |
cbar |
(N,) ndarray of float
|
Total probability, after interaction, that the target is in state j. We use it as the # normalization constant. |
likelihood |
(N,) ndarray of float
|
Likelihood of each individual filter's last measurement. |
omega |
(N, N) ndarray of float
|
Mixing probabilitity - omega[i, j] is the probabilility of mixing the state of filter i into filter j. Perhaps more understandably, it weights the states of each filter by: x_j = sum(omega[i,j] * x_i) with a similar weighting for P_j |
Examples:
>>> import numpy as np
>>> from bayesian_filters.common import kinematic_kf
>>> from bayesian_filters.kalman import IMMEstimator
>>> kf1 = kinematic_kf(2, 2)
>>> kf2 = kinematic_kf(2, 2)
>>> # do some settings of x, R, P etc. here, I'll just use the defaults
>>> kf2.Q *= 0 # no prediction error in second filter
>>>
>>> filters = [kf1, kf2]
>>> mu = [0.5, 0.5] # each filter is equally likely at the start
>>> trans = np.array([[0.97, 0.03], [0.03, 0.97]])
>>> imm = IMMEstimator(filters, mu, trans)
>>>
>>> for i in range(100):
>>> # make some noisy data
>>> x = i + np.random.randn()*np.sqrt(kf1.R[0, 0])
>>> y = i + np.random.randn()*np.sqrt(kf1.R[1, 1])
>>> z = np.array([[x], [y]])
>>>
>>> # perform predict/update cycle
>>> imm.predict()
>>> imm.update(z)
>>> print(imm.x.T)
For a full explanation and more examples see my book Kalman and Bayesian Filters in Python https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
References
Bar-Shalom, Y., Li, X-R., and Kirubarajan, T. "Estimation with Application to Tracking and Navigation". Wiley-Interscience, 2001.
Crassidis, J and Junkins, J. "Optimal Estimation of Dynamic Systems". CRC Press, second edition. 2012.
Labbe, R. "Kalman and Bayesian Filters in Python". https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
Source code in bayesian_filters/kalman/IMM.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | |
predict(u=None)
¶
Predict next state (prior) using the IMM state propagation equations.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
u
|
array
|
Control vector. If not |
None
|
Source code in bayesian_filters/kalman/IMM.py
update(z)
¶
Add a new measurement (z) to the Kalman filter. If z is None, nothing is changed.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z
|
array
|
measurement for this update. |
required |