GH Filter
GHFilter¶
Implements the g-h filter.
GHFilter
¶
Bases: object
Implements the g-h filter. The topic is too large to cover in this comment. See my book "Kalman and Bayesian Filters in Python" [1] or Eli Brookner's "Tracking and Kalman Filters Made Easy" [2].
A few basic examples are below, and the tests in ./gh_tests.py may give you more ideas on use.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
1D np.array or scalar
|
Initial value for the filter state. Each value can be a scalar or a np.array. You can use a scalar for x0. If order > 0, then 0.0 is assumed for the higher order terms. x[0] is the value being tracked x[1] is the first derivative (for order 1 and 2 filters) x[2] is the second derivative (for order 2 filters) |
required |
dx
|
1D np.array or scalar
|
Initial value for the derivative of the filter state. |
required |
dt
|
scalar
|
time step |
required |
g
|
float
|
filter g gain parameter. |
required |
h
|
float
|
filter h gain parameter. |
required |
Attributes:
| Name | Type | Description |
|---|---|---|
x |
1D np.array or scalar
|
filter state |
dx |
1D np.array or scalar
|
derivative of the filter state. |
x_prediction |
1D np.array or scalar
|
predicted filter state |
dx_prediction |
1D np.array or scalar
|
predicted derivative of the filter state. |
dt |
scalar
|
time step |
g |
float
|
filter g gain parameter. |
h |
float
|
filter h gain parameter. |
y |
np.array, or scalar
|
residual (difference between measurement and prior) |
z |
np.array, or scalar
|
measurement passed into update() |
Examples:
Create a basic filter for a scalar value with g=.8, h=.2. Initialize to 0, with a derivative(velocity) of 0.
Incorporate the measurement of 1
Incorporate a measurement of 2 with g=1 and h=0.01
Create a filter with two independent variables.
and update with the measurements (2,4)
References
[1] Labbe, "Kalman and Bayesian Filters in Python" http://rlabbe.github.io/Kalman-and-Bayesian-Filters-in-Python
[2] Brookner, "Tracking and Kalman Filters Made Easy". John Wiley and Sons, 1998.
Source code in bayesian_filters/gh/gh_filter.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 | |
VRF()
¶
Returns the Variance Reduction Factor (VRF) of the state variable of the filter (x) and its derivatives (dx, ddx). The VRF is the normalized variance for the filter, as given in the equations below.
.. math:: VRF(\hat{x}{n,n}) = \frac{VAR(\hat{x}})}{\sigma^2_x
VRF(\hat{\dot{x}}_{n,n}) = \\frac{VAR(\hat{\dot{x}}_{n,n})}{\sigma^2_x}
VRF(\hat{\ddot{x}}_{n,n}) = \\frac{VAR(\hat{\ddot{x}}_{n,n})}{\sigma^2_x}
Returns:
| Type | Description |
|---|---|
vrf_x VRF of x state variable
|
|
vrf_dx VRF of the dx state variable (derivative of x)
|
|
Source code in bayesian_filters/gh/gh_filter.py
VRF_prediction()
¶
Returns the Variance Reduction Factor of the prediction step of the filter. The VRF is the normalized variance for the filter, as given in the equation below.
.. math:: VRF(\hat{x}{n+1,n}) = \frac{VAR(\hat{x}})}{\sigma^2_x
References
Asquith, "Weight Selection in First Order Linear Filters" Report No RG-TR-69-12, U.S. Army Missle Command. Redstone Arsenal, Al. November 24, 1970.
Source code in bayesian_filters/gh/gh_filter.py
batch_filter(data, save_predictions=False, saver=None)
¶
Given a sequenced list of data, performs g-h filter with a fixed g and h. See update() if you need to vary g and/or h.
Uses self.x and self.dx to initialize the filter, but DOES NOT alter self.x and self.dx during execution, allowing you to use this class multiple times without reseting self.x and self.dx. I'm not sure how often you would need to do that, but the capability is there. More exactly, none of the class member variables are modified by this function, in distinct contrast to update(), which changes most of them.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
list like
|
contains the data to be filtered. |
required |
save_predictions
|
boolean
|
the predictions will be saved and returned if this is true |
False
|
saver
|
Saver
|
bayesian_filters.common.Saver object. If provided, saver.save() will be called after every epoch |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
results |
np.array shape (n+1, 2), where n=len(data)
|
contains the results of the filter, where results[i,0] is x , and results[i,1] is dx (derivative of x) First entry is the initial values of x and dx as set by init. |
predictions |
np.array shape(n), optional
|
the predictions for each step in the filter. Only retured if save_predictions == True |
Source code in bayesian_filters/gh/gh_filter.py
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | |
update(z, g=None, h=None)
¶
performs the g-h filter predict and update step on the measurement z. Modifies the member variables listed below, and returns the state of x and dx as a tuple as a convienence.
Modified Members
x filtered state variable
dx derivative (velocity) of x
residual difference between the measurement and the prediction for x
x_prediction predicted value of x before incorporating the measurement z.
dx_prediction predicted value of the derivative of x before incorporating the measurement z.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z
|
any
|
the measurement |
required |
g
|
scalar(optional)
|
Override the fixed self.g value for this update |
None
|
h
|
scalar(optional)
|
Override the fixed self.h value for this update |
None
|
Returns:
| Type | Description |
|---|---|
x filter output for x
|
|
dx filter output for dx (derivative of x
|
|